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Abstract

Federated Learning (FL) has become a revolutionary paradigm in collaborative machine learning,

placing a strong emphasis on decentralized model training to effectively tackle concerns related to data

privacy. Despite significant research on the optimization aspects of federated learning, the exploration

of generalization error, especially in the realm of heterogeneous federated learning, remains an area

that has been insufficiently investigated, primarily limited to developments in the parametric regime.

This paper delves into the generalization properties of deep federated regression within a two-stage

sampling model. Our findings reveal that the intrinsic dimension, characterized by the entropic dimen-

sion, plays a pivotal role in determining the convergence rates for deep learners when appropriately

chosen network sizes are employed. Specifically, when the true relationship between the response and

explanatory variables is described by a β-Hölder function and one has access to n independent and

identically distributed (i.i.d.) samples from m participating clients, for participating clients, the er-

ror rate scales at most as Õ
´

pmnq
´2β{p2β`d̄2βpλqq

¯

, whereas for non-participating clients, it scales as

Õ
´

∆ ¨ m´2β{p2β`d̄2βpλqq
` pmnq

´2β{p2β`d̄2βpλqq
¯

. Here d̄2βpλq denotes the corresponding 2β-entropic di-

mension of λ, the marginal distribution of the explanatory variables. The dependence between the two

stages of the sampling scheme is characterized by ∆. Consequently, our findings not only explicitly

incorporate the “closeness” of the clients, but also highlight that the convergence rates of errors of deep

federated learners are not contingent on the nominal high dimensionality of the data but rather on its

intrinsic dimension.
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1 Introduction

Federated Learning (FL) stands at the forefront of collaborative machine learning techniques, revolutionizing

data privacy and model decentralization in the digital landscape. This innovative approach, first introduced

by Google in 2016 through its application in Gboard, has garnered substantial attention and research interest

due to its potential to train machine learning models across distributed devices while preserving data privacy

and security (McMahan et al., 2017). By enabling training on decentralized data sources such as mobile

devices, FL addresses privacy concerns inherent in centralized model training paradigms (Zhang et al., 2021).

This transformative framework allows devices to collaboratively learn a shared model while keeping sensitive

information local, presenting a promising path forward for advancing technologies in a privacy-preserving

manner.

From a theoretical standpoint, researchers have delved into comprehending the fundamental properties

of Federated Learning (FL), mainly focusing on its optimization characteristics. While a substantial body

of existing experimental and theoretical work centers on the convergence of optimization across training

datasets (Li et al., 2020; Karimireddy et al., 2020; Mitra et al., 2021; Mishchenko et al., 2022; Yun et al.,

2022), the exploration of generalization error, a crucial aspect in machine learning, appears to have received

less meticulous scrutiny within the domain of heterogeneous federated learning. The existing research on

the generalization error of FL primarily focuses on actively participating clients (Mohri et al., 2019; Qu

et al., 2022), neglecting the disparities between these observed data distributions from actively participating

clients and the unobserved distributions inherent in passively nonparticipating clients. In practical federated

settings, a multitude of factors, such as network reliability or client availability, influence the likelihood of

a client’s participation in the training process. Consequently, the actual participation rate may be small,

leading to a scenario where numerous clients never partake in the training phase (Kairouz et al., 2021; Yuan

et al., 2021).

From a generalization viewpoint, when one has access to m participating clients and each client generates

n many i.i.d. observations, Mohri et al. (2019) showed a rate of Op1{
?
mnq holds for the excess risk of the

participating clients. Chen et al. (2020) improved upon this risk bound by deriving fast rates of Op1{mnq for

the expected excess risk for bounded losses. Recently, Hu et al. (2023) derived the generalization bounds for

participating and nonparticipating clients under a generic unbounded loss under different model assumptions

such as small-ball property or sub-Weibullness of the underlying distributions.

Despite the growing interest on the problem, the current literature suffers in many aspects. Firstly, the

generalization bounds derived in the literature are parametric in nature and overlook the misspecification

error inherent in the model assumptions. Secondly, the derived bounds do not take into account the size of

the networks used and its impact on the generalization performance. Furthermore, one key aspect ignored
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by the current framework is that the data on which these models are trained are typically intrinsically low-

dimensional in nature (Pope et al., 2020). However, the current bounds do not explore the dependence the

intrinsic dimension of the data, questioning the efficacy of the current theoretical understanding concerning

the real-world complexities of the problem.

The recent theoretical developments in the generalization aspects of deep learning theory literature have

revealed that the excess risk for different deep learning models, especially regression (Schmidt-Hieber, 2020;

Suzuki, 2019) and Generative models (Huang et al., 2022) exhibit a decay pattern that depend only on the

intrinsic dimension of the data. Notably, Nakada and Imaizumi (2020) and Huang et al. (2022) showed

that the excess risk decays as Opn´1{OpdimM pµqqq, where dimM pµq denotes the Minkowski dimension of the

underlying distribution (see Section 2.2 for a detailed overview). Nevertheless, it is important to highlight

that the Minkowski dimension primarily focuses on measuring the growth rate in the covering number of the

entire support, overlooking scenarios where the distribution may have higher concentrations of mass within

a specific sub-regions. As a result, the Minkowski dimension often overestimates the intrinsic dimension of

the data distribution, leading to slower rates of statistical convergence. In contrast, some studies (Chen

et al., 2022, 2019; Jiao et al., 2021; Dahal et al., 2022) attempt to impose a smooth Riemannian manifold

structure on this support and characterize the rate through the dimension of this manifold. However, this

assumption is not only very strong and unverifiable in practical terms, but also ignores the possibility that

the data may be concentrated only in certain sub-regions and thinly spread over the rest, again resulting in

an overestimate.

Recent insights from the optimal transport literature introduce the Wasserstein dimension (Weed and

Bach, 2019), overcoming these limitations and providing a more accurate characterization of convergence

rates when estimating a distribution through the empirical measure. Furthermore, advancements in this

field introduce the entropic dimension (Chakraborty and Bartlett, 2024), building upon Dudley’s seminal

work (Dudley, 1969), and can be applied to describe the convergence rates for Bidirectional Generative

Adversarial Networks (BiGANs) (Donahue et al., 2017). Remarkably, this entropic dimension is no larger

than the Wasserstein and Minkowski dimensions, resulting in faster rates of convergence for the sample

estimator. However, there has been no developments in incorporating these fast rates available in the

current deep learning theory literature for federated learning possibly due to the complicated heterogeneity

between the clients and inter-dependencies among the data points generated by individual clients.

To address the gap between the theory and practice of federated learning as highlighted above, our work

presents a comprehensive examination of the generalization error in a regression context, employing a two-

level framework that effectively addresses the overlooked gaps within the current literature. This framework

uniquely encapsulates both the diversity and interrelationships present among clients’ distributions as well as

addresses the misspecification error absent in the present literature. Furthermore, we characterize the low-
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dimensional nature of the data distribution through the entropic dimension, which is more efficient compared

to the Minkowski dimension, which is the benchmark in the deep learning theory literature (Nakada and

Imaizumi, 2020; Huang et al., 2022). Our utilization of the entropic dimension results in superior bounds,

surpassing those derived from other dimensions like the Minkowski and Wasserstein dimensions.

Contributions: The main contributions of this paper can be summarized as follows:

• We study the generalization properties of deep federated learning in a two-stage Bayesian sampling

setting when the relation between the response and explanatory variables can be expressed through a

β-Hölder function and an additive sub-Gaussian noise.

• We show that when one has access to n i.i.d. samples from each of the m participating clients, the

excess risk for the participating clients scales as Õ
´

pmnq´2β{p2β`d̄2βpλqq

¯

, where d̄2βpλq denotes the

2β-entropic dimension of λ, the marginal distribution of the explanatory variables.

• Furthermore, for nonparticipating clients, the error rate scales as Õ
´

∆ ¨m´p2β{d̄2βpλq`2βq ` pmnq´p2β{d̄2βpλq`2βq

¯

,

primarily depending on the number of participating clients, m, when a large amount of data is available

for each participating client. Here ∆ “ min
␣

}χ2pλθ, λq}ψ1 , 1
(

characterizes the closeness of the client’s

distribution in terms of the Orlicz-1 norm of the discrepancy in terms of the χ2-divergence.

Organization: The remainder of the paper is organized as follows. In Section 2, we introduce the necessary

notations and background. In Section 3 we introduce the problem at hand, followed by a simulation study

in Section 4 to understand the effect of the intrinsic dimension on the error bounds. In Section 5, we discuss

the main theoretical results of the paper along with the necessary assumptions. We then give a brief proof

overview of the main results in Section 6, followed by concluding remarks and discussions in Section 7.

2 Background

2.1 Notations and Definitions

This section recalls some of the notations and background necessary for our theoretical analyses. We

say A À B (for A, B ě 0) if there exists a constant C ą 0, independent of n, such that A ď CB.

For a function f : S Ñ R (with S being Polish) and a probability measure ν on S, ess supνxPS fpxq “

inf
␣

a : ν
`

f´1 ppa,8qq
˘

“ 0
(

. For any function f : S Ñ R, and any measure γ on S, let }f}Lppγq :“
`ş

S |fpxq|pdγpxq
˘1{p

, if 0 ă p ă 8. Also let, }f}L8pγq :“ ess supγxPS |fpxq|. We say An “ ÕpBnq if

An ď Bn ˆ polylogpnq, for some factor polylogpnq that is a polynomial in log n.

Definition 1 (Covering Number). For a metric space pS, ϱq, the ϵ-covering number w.r.t. ϱ is defined as:

N pϵ;S, ϱq “ inftn P N : Dx1, . . . xn such that Yn
i“1 Bϱpxi, ϵq Ě Su.
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Definition 2 (Neural networks). Let L P N and tNiuiPrLs P N. Then a L-layer neural network f : Rd Ñ RNL

is defined as,

fpxq “ AL ˝ σL´1 ˝AL´1 ˝ ¨ ¨ ¨ ˝ σ1 ˝A1pxq (1)

Here, Aipyq “ Wiy ` bi, with Wi P RNiˆNi´1 and bi P RNi´1 , with N0 “ d. Note that σj is applied

component-wise. Here, tWiu1ďiďL are known as weights, and tbiu1ďiďL are known as biases. tσiu1ďiďL´1

are known as the activation functions. Without loss of generality, one can take σℓp0q “ 0, @ ℓ P rL´ 1s. We

define the following quantities: (Depth) Lpfq :“ L is known as the depth of the network; (Number of weights)

The number of weights of the network f is denoted as Wpfq; (maximum weight) Bpfq “ max1ďjďLp}bj}8q _

}Wj}8 to denote the maximum absolute value of the weights and biases.

NNtσiuiPrL´1s
pL,W,B,Rq “ tf of the form (1) : Lpfq ď L,Wpfq ď W,Bpfq ď B, sup

xPRd
}fpxq}8 ď Ru.

If σjpxq “ x_ 0, for all j “ 1, . . . , L´ 1, we denote NNtσiu1ďiďL´1
pL,W,B,Rq as RN pL,W,B,Rq.

Definition 3 (Hölder functions). Let f : S Ñ R be a function, where S Ď Rd. For a multi-index s “

ps1, . . . , sdq, let, Bsf “
B

|s|f

Bx
s1
1 ...Bx

sd
d

, where, |s| “
řd
ℓ“1 sℓ. We say that a function f : S Ñ R is β-Hölder (for

β ą 0) if }f}Hβ :“
ř

s:0ď|s|ďtβu }Bsf}8 `
ř

s:|s|“tβu supx‰y
}B

sfpxq´B
sfpyq}8

}x´y}
β´tβu
8

ă 8. If f : Rd1 Ñ Rd2 , then we

define }f}Hβ “
řd2
j“1 }fj}Hβ . For notational simplicity, let, HβpS1,S2, Cq “ tf : S1 Ñ S2 : }f}Hβ ď Cu.

Here, both S1 and S2 are both subsets of real vector spaces.

Definition 4 (χ2-divergence). Suppose that P and Q are distributions on r0, 1sd. Then,

χ2pP,Qq “

$

’

&

’

%

ş

´

dP
dQ ´ 1

¯2

dQ if P ! Q

8 Otherwise.

Definition 5 (Orlicz norm, Vershynin, 2018). For a random variable X, the ψp-Orlicz norm is defined as:

}X}ψp “ inftt ą 0 : E expp|Xp|{tpq ď 2u.

2.2 Intrinsic Dimension

It is hypothesized that real-world data, particularly vision data, is mostly constrained within a lower-

dimensional structure embedded in a high-dimensional feature space (Pope et al., 2020). To quantify this

reduced dimensionality, researchers have introduced various metrics to gauge the effective dimension of the

underlying probability distribution that generates the data. Among these methods, the most commonly

employed ones involve assessing the rate of growth of the covering number, on a logarithmic scale, for the

majority of the support of this data distribution.

Let us consider a compact Polish space (Villani, 2021) denoted as pS, ϱq, where µ represents a probability

measure defined on it. For the rest of this paper, we will assume that ϱ corresponds to the ℓ8-norm. The most
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straightforward measure of the dimension of a probability distribution is the upper Minkowski dimension

Falconer (2004) of its support, and it is defined as follows:

dimM pµq “ lim sup
ϵÓ0

logN pϵ; supppµq, ℓ8q

logp1{ϵq
.

This concept of dimensionality relies solely on the covering number of the support and does not presume the

existence of a smooth mapping to a lower-dimensional Euclidean space. As a result, it encompasses not only

smooth Riemannian manifolds but also highly non-smooth sets such as fractals. The statistical convergence

properties of various estimators related to the upper Minkowski dimension have been extensively investigated

in the literature. Kolmogorov and Tikhomirov (1961) conducted a comprehensive study on how the covering

number of different function classes depends on the upper Minkowski dimension of the support. More

recently, studies by Nakada and Imaizumi (2020) and Huang et al. (2022) demonstrated how deep learning

models can leverage this inherent low-dimensionality in data, which is also reflected in their convergence

rates. However, a notable limitation associated with utilizing the upper Minkowski dimension is that when

a probability measure covers the entire sample space but is concentrated predominantly in specific regions,

it may yield a high dimensionality estimate that might not accurately reflect the underlying

To address the aforementioned challenge, in terms of the intrinsic dimension of a measure µ, Chakraborty

and Bartlett (2024) introduced the concept of the α-entropic dimension of a measure. Before we proceed,

we recall the pϵ, τq-cover of a measure (Posner et al., 1967) as:

Nϵpµ, τq “ inftN pϵ;S, ϱq : µpSq ě 1 ´ τu,

i.e. Nϵpµ, τq counts the minimum number of ϵ-balls required to cover a set S of probability at least 1 ´ τ ,

under the probability measure µ.

Definition 6 (Entropic Dimension, Chakraborty and Bartlett, 2024). For any α ą 0, we define the α-

entropic dimension of µ as:

d̄αpµq “ lim sup
ϵÓ0

logNϵpµ, ϵ
αq

logp1{ϵq
.

The α-entropic dimension extends Dudley’s entropic dimension (Dudley, 1969) to characterize the con-

vergence rate for the Bidirectional Generative Adversarial Network (GAN) problem (Donahue et al., 2017).

It has been demonstrated that the entropic dimension is no larger than the upper Minkowski dimension and

the upper Wasserstein dimension (Weed and Bach, 2019). Moreover, strict inequality holds even for simple

examples. For example, for the Pareto distribution, pγpxq “ γx´pγ`1q
1px ě 1q, it is easy to check that

dimM ppγq “ 8 and d̄αppγq “ 1 `α{γ. For a more in-depth exploration, we direct the reader to Section 3 of

Chakraborty and Bartlett (2024). The study indicated that the entropic dimension serves as a more efficient

means of characterizing the intrinsic dimension of data distributions compared to popular measures such as
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the upper Minkowski dimension or the Wasserstein dimension and enables the derivation of faster rates of

convergence for the estimates.

3 Problem Statement

We let X “ r0, 1sd be the data space and Y “ R be the outcome space. We assume that there are m

clients and each client gives rise to n data points. To conceptualize the two-stage sampling framework in a

Bayesian setting, we introduce an unobserved hyper-parameter θ, lying in some parameter space Θ, which

we assume to be Polish and compact. This θ is used to represent a client’s inner state: θi represents the state

of the i-th participating client and we assume that θ1, . . . , θm are independent and identically distributed

(i.i.d.) according to the distribution πp¨q on Θ. pxij , yijq denotes the j-th sample for the i-th participating

client. Conditioned on θi, we assume that txiju
n
i“1 are i.i.d. λθip¨q. Furthermore, we suppose that the true

regression function is f0p¨q and yij “ f0pxijq ` ϵij , for zero-mean sub-Gaussian random variables ϵij ’s which

are i.i.d. and are independent of θi’s and x1
ijs. To write more succinctly,

θ1, . . . , θm
i.i.d.
„ πp¨q; xi1, . . . ,xin|θi

i.i.d.
„ λθip¨q; yij “ f0pxijq ` ϵij , ϵij

i.i.d.
„ τ. (2)

The law of ϵij ’s are denoted as τp¨q for notational simplicity. Note that a similar two-level framework was

also used by Mohri et al. (2019); Chen et al. (2021); Hu et al. (2023), although under a different model. We

posit that this assumption holds practical merit, e.g. cross-device federated learning, where the total number

of clients is typically large, and it is reasonable to presume that the m participating clients are selected at

random from the pool (Reisizadeh et al., 2020; Wang et al., 2021). In this learning scenario, the training

process solely engages with the m distributions tλθiu
m
i“1, where as, the total number of clients and the count

of non-participating clients generally far exceeds m (Xu and Wang, 2020; Yang et al., 2020). In practical

terms, this two-level sampling framework not only captures the diversity among clients’ distributions but

also underscores the interdependence among these distributions. A similar framework has been employed in

recent literature (Li et al., 2020; Yuan et al., 2021; Wang et al., 2021; Hu et al., 2023).

Throughout the remainder of the analysis, we take the loss function as the squared error loss, which

emerges as a natural choice for additive noise models. In practice, one has only access to tpxij , yijquiPrms, jPrns

and obtains an estimate for f0 under the squared error loss as:

f̂ “ argmin
fPF

m
ÿ

i“1

n
ÿ

j“1

pyij ´ fpxijqq2. (3)

Here, F is a function class, usually realized through neural networks. In this paper, we take F “

RN pL,W,B,Rq for some choice of the hyper-parameters.

Under model (2), a new data point for a nonparticipating client is generated as θ „ πp¨q, x|θ „ λθp¨q and

7



y “ f0pxq ` ϵ, where, ϵ „ τp¨q and is independent of θ and x.

λp¨q “

ż

λθp¨qdπpθq

denotes the marginal distribution of the explanatory variables for the nonparticipating clients. The excess

risk for the nonparticipating clients is denoted as,

Eθ„πEx|θ„λθEy|x,θ

´

py ´ f̂pxqq2 ´ py ´ f0pxqq2
¯

“Eθ„πEx|θ„λθEϵ„τ
´

pf0pxq ` ϵ´ f̂pxqq2 ´ ϵ2
¯

“Eθ„πEx|θ„λθ pf̂pxq ´ f0pxqq2

“}f̂ ´ f0}2L2pλq. (4)

Similarly, the marginal distribution for the explanatory variable for participating clients, selected at random

is λ̂pmp¨q “ 1
m

řm
i“1 λθip¨q. Thus, the excess risk for a participating client, selected at random is given by,

Eθ„π̂mEx|θ„λθEy|x,θ

´

py ´ f̂pxqq2 ´ py ´ f0pxqq2
¯

“Eθ„π̂mEx|θ„λθEϵ„τ
´

pf0pxq ` ϵ´ f̂pxqq2 ´ ϵ2
¯

“Eθ„π̂mEx|θ„λθ pf̂pxq ´ f0pxqq2

“}f̂ ´ f0}2L2pλ̂pmq
. (5)

In the above calculations π̂m ” Unif ptθ1, . . . , θmuq, denotes the empirical distribution on tθ1, . . . , θmu. The

goal of this paper is to understand how to choose F efficiently to obtain tight bounds on the excess risk in

(4) and (5).

4 A proof of Concept

Before delving into the theoretical exploration of the problem, we conduct an experiment aimed at demon-

strating that the error rates for deep federated regression are primarily contingent on the intrinsic di-

mension of the data. We take the true function f
p1q

0 pxq “ 1
d´1

řd´1
i“1 xixi`1 ` 2

d

řd
i“1 sinp2πxiq1txi ď

0.5u ` 1
d

řd
i“1p4πp

?
2 ´ 1q´1pxi ´ 2´1{2q2 ´ πp

?
2 ´ 1qq1txi ą 0.5u. This choice of f0 was used by Nakada

and Imaizumi (2020). Clearly, f0 P H2pRd,Rq. We take d “ 30 and the first d int coordinates of x|θ to

be uniformly distributed on the rθ, θ ` 1sd int. The remaining d ´ d int coordinates of to be 0. θ is varied

on the pd int ` 4q-dimensional cube r0, 1sd int`4. We generate y “ f0pxq ` ϵ, where ϵ are Normalp0, 0.1q.

For our experiment, we vary m,n P t20, 40, . . . , 200u and d int P t10, 20u. We train a three-layer network

with ReLU activation with hidden layer widths as d and take Adam (Kingma and Ba, 2015) with a learning

rate 0.001. We replicate the experiments 20 times and report the logarithm of the test Mean Square Error

(MSE) for both participating and non-participating clients in Figures 1(a) and 1(b). We also conduct a

similar experiment with f
p2q

0 pxq “ 1
d

řn
i“1 x

2
i1txi ď 0.5u ´ 1

d

řn
i“1pxi ´ 3{4q1txi ą 0.5u, which is a member
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of H1pRd,Rq and report the outcomes in Figures 1(c) and 1(d). It is clear from Figure 1 that the error

rates for d int “ 10 is lower than for the case d int “ 20, further reinforcing the evidence that the gener-

alization performance of federated learning models are dependent on their intrinsic dimension only and not

on the dimension of the representative feature space. The codes pertaining to this section are available at

https://github.com/SaptarshiC98/FL.
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Figure 1: Average test mean squared error (MSE) is presented for both participating and non-participating

clients across two distinct intrinsic dimensions, varying training sample sizes on a logarithmic scale. The error

bars and bands illustrate the standard deviation over 20 replications. The top row corresponds to experiments

with f
p1q

0 , while the bottom row denotes the performance for f
p2q

0 . Notably, the intrinsic dimensions manifest

two distinct decay patterns. As anticipated from theoretical analyses, participating clients exhibit a lower

error rate compared to non-participating clients.

5 Main Results and Inference

To facilitate the the theoretical analysis, we assume that the problem is smooth in terms of the learning

function f0. As a notion of smoothness, we assume that f0 is β-Hölder. The assumption of smoothness
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for the regression function is common in the present literature on the statistical convergence rates for deep

learners (Chen et al., 2019; Schmidt-Hieber, 2020; Nakada and Imaizumi, 2020; Chakraborty and Bartlett,

2024) and covers a wide variety of well-behaved functions. Formally,

Assumption 1. f0 P Hβpr0, 1sd,R, Cq, for some positive constant C ą 0.

For notational simplicity, we define,

d̃α :“ ess supπθPΘ d̄αpλθq,

i.e., the maximum entropic dimension of the explanatory variable for all clients. First, for precipitating

clients, the error rate in terms of the total number of samples depends on d̃2β . In essence, }f̂ ´ f0}2L2pλ̂pmq

scales roughly as Õppmnq´2β{pd̃2β`2βqq, barring poly-log factors, with high probability. This result is formally

stated in Theorem 7.

Theorem 7 (Error rate for participating clients). Suppose that λ
`

r0, 1sd
˘

“ 1 and s ą d̃2β . We can find an

n0 P N, such that if m,n ě n0, we can choose F “ RN pL,W,B,Rq in such a way that, L — log pmnq, W —

pmnq
s

2β`s log pmnq, logB — log pmnq and R ď 2C, such that with probability at least 1´2 exp
´

´pmnq
s

2β`s

¯

,

}f̂ ´ f0}2L2pλ̂pmq
À pmnq

´
2β
s`2β log2pmnq.

Second, for nonparticipating clients, the error rate }f̂ ´ f0}2L2pλq
exhibits a scaling behavior roughly

characterized by

Õ
´

∆pθ,Xqm´2β{pd̄2βpλq`2βq ` pmnq´2β{pd̄2βpλq`2βq
¯

,

barring log-factors as shown in Theorem 8. Here the term,

∆pθ,xq “ min
␣

}χ2pλθ, λq}ψ1 , 1
(

:“ inf
␣

t ą 0 : Eθ expp|χ2pλθ, λq|p{tpq ď 2
(

^ 1. (6)

characterizes the level of dependency among θ and X. It essentially quantifies the “closeness” of the dis-

tributions across clients, by evaluating how much the client-specific distribution λθ deviates from the mean

distribution λ, given that θ „ πp¨q. When θ and X are independent, it is straightforward to see that the

discrepancy measure ∆pθ;Xq “ 0 as well. In this scenario, where the distributions of the explanatory vari-

ables across different clients are identical, the overall error rate behaves as though one has access to mn i.i.d.

samples, thus reflecting the optimal scenario for error scaling, i.e. Õ
´

pmnq´2β{pd̄2βpλq`2βq

¯

. However, when

there is some degree of dependency between θ and X, the error rate no longer scales as favorably. Instead, it

scales at a rate no faster than Õ
´

m´2β{pd̄2βpλq`2βq max
!

∆pθ,xq, n´2β{pd̄2βpλq`2βq

)¯

. Therefore, the extent

to which the client distributions deviate from one another plays a significant role in determining the overall

efficiency and performance for deep federated learners. When one has enough samples from each of the

clients, i.e., when n ě ∆pθ,xq
´
d̄2βpλq`2β

2β , the error rate scales as Õ
´

∆pθ,xqm´2β{pd̄2βpλq`2βq

¯

, depending

only on the number of participating clients and the discrepancy of the clients’ distributions.
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Theorem 8 (Error rate for nonparticipating clients). Suppose that λ
`

r0, 1sd
˘

“ 1 and s ą d̄2βpλq. We

can find an n1
0 P N, such that if m,n ě n1

0, we can choose F “ RN pL,W,B,Rq in such a way that,

L — log
´

mn
∆pθ,xqn`1

¯

, W —

´

mn
∆pθ,xqn`1

¯
s

2β`s

log
´

mn
∆pθ,xqn`1

¯

, logB — log
´

mn
∆pθ,xqn`1

¯

and R ď 2C, such

that with probability at least 1 ´ 3 exp
´

´pmnq
s

2β`s

¯

´ 2 exp
´

´m
s

2β`s

¯

,

}f̂ ´ f0}2L2pλq Àm´
2β
s`2β

´

∆pθ,xq ` n´
2β
s`2β

¯

ˆ log3m
`

log2m` log n
˘

.

Comparison with the Existing Literature Firstly, it is important to note that the current state of

the art do not propose any dimension-based error bounds for deep federated learning. The only comparable

results in the prior art is in the directions of Gaussian-noise additive regression models (Nakada and Imaizumi,

2020) and GANs (Huang et al., 2022; Dahal et al., 2022; Chakraborty and Bartlett, 2024). The negative

exponent for the sample size derived by Nakada and Imaizumi (2020) is roughly, 2β

2β`dimM pλq
. Since d̄2βpλq ď

dimM pλq (Chakraborty and Bartlett, 2024), the negative exponent of the sample size derived in this paper, i.e.

2β
2β`d̄2βpλq

ě
2β

2β`dimM pλq
, resulting in better rates compared to the existing literature for additive regression

models.

Bounds on the Expected Excess Risk Using the high probability bounds in Theorems 7 and 8, we

can derive control the expected excess risk for both participating and nonparticipating clients. We state this

result as a corollary as follows:

Corollary 9. Suppose that λ
`

r0, 1sd
˘

“ 1. Then,

(a) if s ą d̃2β and if F is chosen according to Theorem 7, then, E}f̂ ´ f˚}2L2pλ̂pmq
À pmnq

´
2β
s`2β log2pmnq.

(b) if s ą d̄2βpλq and if F is chosen according to Theorem 8,

E}f̂ ´ f0}2L2pλq Àm´
2β
s`2β

´

∆pθ,xq ` n´
2β
s`2β

¯

ˆ log3m
`

log2m` logpmnq
˘

.

Inference for Data Supported on a Manifold Suppose that the explanatory variables are supported

on a d‹-dimensional compact differentiable manifold. From Propositions 8 and 9 of Weed and Bach (2019),

we note that the Minkowski and lower Wasserstein dimension of λ is d‹. Since d̄αpλq lies between these two

dimension (Chakraborty and Bartlett, 2024, Proposition 8), we conclude that d̄αpλq “ d‹, for all α ą 0.

Hence the error rates for participating and nonparticipating clients scale as roughly O
´

pmnq
´

2β
d‹`2β

¯

and

O
´

m´
2β

d‹`2β ` pmnq
´

2β
d‹`2β

¯

, respectively, excluding the excess log-factors.

Corollary 10. Suppose that the support of λ is a compact d‹-dimensional differentiable manifold and let

s ą d‹. Suppose that the assumptions of Theorem 8 hold and and F is chosen according to Theorem 8, with

probability at least 1 ´ 3 exp
´

´pmnq
s

2β`s

¯

´ 2 exp
´

´m
s

2β`s

¯

,

}f̂ ´ f˚}2L2pλq Àm´
2β
s`2β

´

∆pθ,xq ` n´
2β
s`2β

¯

ˆ log3m
`

log2m` logpmnq
˘

.
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Comparison of error rates for Participating and Non-participating clients One can also infer

that the error rate for participating clients decays faster than the error rates for nonparticipating clients.

This is because one can show that d̃2β ď d̄2βpλq, making the upper bound on the error converge faster for

participating clients than that of nonparticipating clients. To show this, we state the Lemma 11 which ensures

that d̃α is at most the α-entropic dimension of λ. Thereafter, we state the result formally in Corollary 12.

Lemma 11. For any α ą 0, d̃α ď d̄αpλq.

Corollary 12. Suppose λ
`

r0, 1sd
˘

and let s ą d̄2βpλq. Then if F is chosen according to Theorem 7 and the

assumptions of Theorem 7 hold, with probability at least 1 ´ 2 exp
´

´pmnq
s

2β`s

¯

,

}f̂ ´ f0}2L2pλ̂pmq
À pmnq

´
2β
s`2β log2pmnq.

Network Sizes We observe that Theorem 7 and 8 imply that one can select networks with the number of

weights as an exponent of m and n, which is smaller than 1. Additionally, this exponent is solely dependent

on the intrinsic dimension of the explanatory variables. Furthermore, for smooth models, where β is large,

it is feasible to opt for smaller networks that necessitate fewer parameters compared to non-smooth models.

This is because the exponent on the number of weights in Theorems 7 and 8 decreases as β increases. Such

a trend aligns with practical expectations, where simpler problems often require less complex networks in

contrast to more challenging problems.

6 Proof of the Main Results

This section provides a structured overview of proofs the main results, namely Theorems 7 and 8, with

comprehensive details available in the appendix. For ease of notation, we denote Pp¨|x, θq to represent

the conditional distribution given txi,juiPrms,jPrns and tθiuiPrms. Similarly, Pp¨|θq is used to denote the

conditional distribution given tθiuiPrms. As an initial step in establishing bounds on the excess risks for both

the participating and nonparticipating clients, we proceed to derive the following oracle inequality. This

inequality effectively constrains the excess risk in terms of the approximation error and a generalization gap.

Lemma 13. For any f P F ,

}f̂ ´ f0}2L2pλ̂m,nq
ď}f ´ f0}2L2pλ̂m,nq

`
2

mn

m
ÿ

i“1

n
ÿ

j“1

ϵijpf̂pxijq ´ fpxijqq. (7)

The first term on the right-hand side (RHS) of the oracle inequality (Lemma 13) bears resemblance to an

approximation error, whereas the second term resembles a generalization gap. Importantly, increasing the

size of the networks in F can diminish the approximation error but might concurrently lead to an increased
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generalization gap, and conversely. The crux lies in choosing a network of optimal size that guarantees

the mitigation of both these errors to sufficiently small levels. In the subsequent results, we delve into the

individual control of these terms.

6.1 Generalization Gap

To effectively manage the generalization error, we employ localization techniques, as expounded by Wain-

wright (2019, Chapter 14). These techniques play a pivotal role in achieving fast convergence of the sample

estimator to the population estimator under the L2pλ̂pmq and L2pλq norms. It is crucial to note that the true

function f0 may not be exactly representable by a ReLU network. In such cases, our alternative approach

involves establishing a high-probability bound for the squared L2pλq norm difference between our estimated

function f̂ and f˚, where f˚ P F is considered sufficiently close to f0. Our strategy unfolds in a two-step

process: firstly, we derive a local complexity bound, detailed in Lemma 14. Subsequently, we leverage this

local complexity bound to derive an estimate for }f̂ ´ f˚}2L2pλ̂pmq
, as expounded in Lemma 15. This result is

then utilized to control }f̂ ´ f˚}2L2pλq
in Lemma 19. These results are presented subsequently, with proofs

available in the Appendix.

Lemma 14. Suppose α P p0, 1{2q and n ě max
␣

e1{α,PdimpFq
(

. Then, for any f˚ P F , with probability

(under Pp¨|θq) at least, 1 ´ exp
`

´n1´2α
˘

,

}f̂ ´ f˚}2L2pλ̂m,nq
À}f˚ ´ f0}2L2pλ̂m,nq

` pmnq´2α `
1

mn
PdimpFq logpmnq. (8)

Lemma 15. Suppose that n ě PdimpFq. Then, with probability (under Pp¨|θq) at least 1´3 expp´pmnq1´2αq,

}f̂ ´ f˚}2L2pλ̂pmq
À}f˚ ´ f0}2L2pλ̂pmq

` pmnq´2α `
1

mn
pPdimpFq logpmnq ` log logpmnqq

` ϵ2 `
1

mn
logN

`

ϵ;F , } ¨ }L8pr0,1sdq

˘

Lemma 16. With probability at least 1 ´ 3 exp
`

´pmnq1´α
˘

´ 2 exp
´

´m1´α1
¯

,

}f̂ ´ f˚}2L2pλq Àϵ2 ` pmnq´2α `
1

mn
logN

`

ϵ;F , } ¨ }L8pr0,1sdq

˘

`
1

mn
pPdimpFq logpmnq ` log logpmnqq

`
∆pθ,xq

m

´

logN
`

ϵ;F , } ¨ }L8pr0,1sdq

˘

`m1´2α1

` log logm
¯

.

6.2 Approximation Error

To effectively bound the overall error in Lemma 13, one needs to control the approximation error, denoted

by the first term of (7). Exploring the approximating potential of neural networks has witnessed substantial

interest in the research community in the past decade or so. Pioneering studies such as those by Cybenko

(1989) and Hornik (1991) have extensively examined the universal approximation properties of networks
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utilizing sigmoid-like activations. These foundational works demonstrated that wide, single-hidden-layer

neural networks possess the capacity to approximate any continuous function within a bounded domain.

In light of recent advancements in deep learning, there has been a notable surge in research dedicated to

exploring the approximation capabilities of deep neural networks. Some important results in this direction

include those by Yarotsky (2017); Lu et al. (2021); Petersen and Voigtlaender (2018); Shen et al. (2019);

Schmidt-Hieber (2020) among many others. To control the approximation errors }f˚ ´ f0}2L2pλ̂pmq
and }f˚ ´

f0}2L2pλq
, we employ the recent approximation results derived by Chakraborty and Bartlett (2024).

Lemma 17 (Chakraborty and Bartlett, 2024). Suppose that f P HαpRd,R, Cq, for some C ą 0 and let

s ą d̄αppµq. Then, we can find constants ϵ0 and a, that might depend on α, d and C, such that, for any

ϵ P p0, ϵ0s, there exists a ReLU network, f̂ with Lpf̂q ď a logp1{ϵq, Wpf̂q ď a logp1{ϵqϵ´s{α, Bpf̂q ď aϵ´1{α

and Rpf̂q ď 2C, that satisfies, }f ´ f̂}Lppγq ď ϵ.

It is noteworthy that when supppλq possesses a finite Minkowski dimension, as per Chakraborty and

Bartlett (2024, Proposition 8 (c)), we observe that d̄αp ď dimM pµq. Consequently, the number of weights

needed for an ϵ-approximation, in the Lp sense, is limited to at mostOpϵ´d̄αp{α logp1{ϵqq. This result improves

upon the bounds Opϵ´dimM pµq{α, derived by Nakada and Imaizumi (2020) as a special case. It is crucial to

highlight that the requisite number of weights for low-dimensional data, specifically when d̄αppγq ! d, is

notably smaller than Opϵ´d{α logp1{ϵqq. This stands in contrast to the scenario when approximating over

the entire space with respect to the ℓ8-norm (Yarotsky, 2017; Chen et al., 2019). Using the above results,

we are now ready to formally prove Theorem 7 and 8 in Sections 6.3 and 6.4, respectively.

6.3 Proof of Theorem 7

Proof. Suppose that s ą d̃2β . From Lemma 11, we observe that d̃2β ě d̄2βpλ̂pmq, almost surely under Pp¨|θq.

Hence, s ą d̄2βpλ̂pmq almost surely under Pp¨|θq. From Lemma 17, we can choose F “ RN pL,W,B,Rq with

L — logp1{ϵq,W — ϵ´s{β , logB — logp1{ϵq and R ď 2C such that inffPF }f´f0}L2pλ̂pmq
ď ϵ. From Lemma 15,

we observe that, under Pp¨|θq, with probability at least, 1 ´ 3 exp
`

´pmnq1´2α
˘

,

}f̂ ´ f0}2L2pλ̂pmq

ď2}f̂ ´ f˚}2L2pλ̂pmq
` 2}f˚ ´ f0}2L2pλ̂pmq

À}f˚ ´ f0}2L2pλ̂pmq
` pmnq´2α `

1

mn
PdimpFq logpmnq `

log logpmnq

mn
` ϵ2 `

logN
`

ϵ;F , } ¨ }L8pr0,1sdq

˘

mn

Àϵ2 ` pmnq´2α `
logpmnq

mn
WL logW `

log logpmnq

mn
`

W log
´

2LBLpW`1q
L

ϵ

¯

mn
(9)

We choose ϵ — pmnq
´

β
2β`s . Thus, from (9), we note that with probability at least, 1 ´ 3 exp

`

´pmnq1´2α
˘

,

}f̂ ´ f0}2L2pλ̂pmq
À pmnq´2α ` pmnq

´
2β
s`2β log3pmnq
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Choosing α “
β

2β`s , we note that with probability at least 1 ´ 3 exp
´

´pmnq
s

2β`s

¯

,

}f̂ ´ f0}2L2pλ̂pmq
À pmnq

´
2β
s`2β log3pmnq.

Thus, for some constant τ ,

P
ˆ

}f̂ ´ f0}2L2pλ̂pmq
ď τ pmnq

´
2β
s`2β log3pmnq

ˇ

ˇ

ˇ

ˇ

θ

˙

ě 1 ´ 3 exp
´

´pmnq
s

2β`s

¯

.

The result now follows from Integrating both sides w.r.t. the distribution of θ1, . . . , θm.

6.4 Proof of Theorem 8

Proof. From Lemma 17, we can choose F “ RN pL,W,B,Rq with L — logp1{ϵq,W — ϵ´s{β , logB — logp1{ϵq

and R ď 2C such that inffPF }f ´ f0}L2pλq ď ϵ. From Lemma 16, we observe that, with probability at least,

1 ´ 3 exp
`

´pmnq1´2α
˘

´ 2 exp
´

´m1´2α1
¯

,

}f̂ ´ f˚}2L2pλq

Àϵ2 ` pmnq´2α `
1

mn
logN

`

ϵ;F , } ¨ }L8pr0,1sdq

˘

`
1

mn
pPdimpFq logpmnq ` log logpmnqq `

∆pθ,xq

m

`

logN
`

ϵ;F , } ¨ }L8pr0,1sdq

˘

`m1´2α
˘

Àϵ2 ` pmnq´2α ` ∆pθ,xqm´α1

`
logmn

mn
PdimpFq `

ˆ

1

mn
`

∆pθ,xq

m

˙

W log

ˆ

2LBLpW ` 1qL

ϵ

˙

`
log logmn

mn

(10)

We choose ϵ —

´

∆pθ,xq

m ` 1
mn

¯

β
2β`s

. Thus, from (10), we note that with probability at least, 1´3 exp
`

´pmnq1´2α
˘

´

2 exp
´

´m1´2α1
¯

,

}f̂ ´ f˚}2L2pλq À ∆pθ,xqm´2α1

` pmnq´2α `

ˆ

∆pθ,xq

m
`

1

mn

˙

2β
s`2β

log3m
`

log2m` logpmnq
˘

Choosing α “ α1 “
β

2β`s , we note that with probability at least 1 ´ 3 exp
´

´pmnq
s

2β`s

¯

´ 2 exp
´

´m
s

2β`s

¯

,

}f̂ ´ f˚}2L2pλq Àm´
2β
s`2β

´

∆pθ,xq ` n´
2β
s`2β

¯

log3m
`

log2m` logpmnq
˘

.

We refer the reader to the Appendix for a comprehensive and detailed exposition of the supporting

lemmata and essential results.

7 Discussions and Conclusion

In this paper, we present a comprehensive framework for analyzing error rates in deep federated regres-

sion, encompassing both participating and nonparticipating clients, particularly when the data manifests an
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intrinsically low-dimensional structure within a high-dimensional feature space. We capture this intrinsic

low-dimensionality using the entropic dimension of the explanatory variables and establish an error bound

on the excess risk, accounting for both misspecification and generalization errors. The derived excess risk

bounds are achieved by balancing model misspecification against stochastic errors, enabling the identifica-

tion of optimal network architectures based on sample size. This framework facilitates a nuanced analysis of

model accuracy for both participating and nonparticipating clients, with a focus on the interplay between

sample size and intrinsic data dimensionality.

Our contributions extend the existing literature by not only broadening parametric results to encompass

more general nonparametric classes but also by incorporating a characterization of the “closeness” of clients’

distributions through the Orlicz-1 norm of the corresponding χ2-divergences in our generalization bounds–

a consideration previously overlooked in prior studies. Supported by empirical evidence, we also provide a

theoretical comparison of error rates for participating and nonparticipating clients, demonstrating that these

rates depend not on the full-data dimensionality (in terms of the number of observations) but rather on the

intrinsic dimension, thereby elucidating the effectiveness of federated learning in high-dimensional contexts.

While our findings shed light on the theoretical aspects of deep federated learning, it is crucial to recognize

that practical evaluation of total test error must account for an optimization error component. Accurately

estimating this component is a significant challenge due to the non-convex and complex nature of the

optimization problem. Nevertheless, our error analyses remain independent of the optimization process

and can be seamlessly integrated with optimization analyses. Another open question remains whether

characterizing the dependence between the two sampling stages using the χ2-divergence is optimal. It is well-

known that alternative divergence measures, such as Kullback-Leibler (KL) or total variation divergences,

scale logarithmically compared to the χ2-divergence. Replacing the χ2-divergence with KL or TV may

further tighten the bounds on excess risk. Additionally, exploring the minimax optimality of the proposed

bounds in terms of the sample sizes m and n presents an intriguing direction for future research.
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A Proofs from Section 5

Lemma 18. For any α ą 0, d̄αpλ̂pmq ď d̃α, almost surely.

Proof. Let, s ą max1ďiďm d̄αpλθiq. By definition, we can find an ϵ0 P p0, 1q, such that if ϵ P p0, ϵ0s,

Nϵpλθi , ϵ
αq ď ϵ´s, for all i “ 1, . . . ,m. By definition, we can find sets Ai’s such that, λθipAiq ě 1 ´ ϵα and

N pϵ;Ai, ϱq ď ϵ´s, for all i “ 1, . . . ,m. Let A “ Ym
i“1Ai. Then, λ̂

p
mpAq “ 1

m

řm
i“1 λθipAq ě 1

m

řm
i“1 λθipAiq ě

1 ´ ϵα. Furthermore, N pϵ;A, ϱq ď
řm
i“1 N pϵ;Ai, ϱq ď mϵ´s. Thus, Nϵpλ̂

p
m, ϵ

αq ď mϵ´s. Hence,

d̄αpλ̂pmq ď lim sup
ϵÓ0

logNϵpλ̂
p
m, ϵαq

logp1{ϵq
“ lim

ϵÓ0

logm ` s logp1{ϵq

logp1{ϵq
“ s.

Thus, for any s ą max1ďiďm d̄αpλθiq, d̄αpλ̂pmq ď s. Hence, d̄αpλ̂pmq ď max1ďiďm d̄αpλθiq ď d̃α.
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A.1 Proof of Lemma 11

Proof. Suppose that s ą d̄αpλq “ lim supϵÓ
logNϵpλ,ϵαq

logp1{ϵq . Thus, we can find ϵ0 P p0, 1q, such that if ϵ P p0, ϵ0s,

Nϵpλ, ϵ
αq ď ϵ´s. Hence there exists Sϵ, such that λpSϵq ě 1 ´ ϵα and N pϵ;S, ϱq ď ϵ´s. Suppose that

Θn “ tθ P Θ : λθpSϵ{nq ě 1 ´ ϵα, @ϵ P p0, ϵ0su.

For any ϵ P p0, ϵ0s, we note that,

λpSϵ{nq “

ż

λθpSϵ{nqdπpθq “

ż

Θn

λθpSϵ{nqdπpθq `

ż

Θc
n

λθpSϵ{nqdπpθq ď πpΘnq ` p1 ´ ϵαq p1 ´ πpΘnqq

ùñ 1 ´ pϵ{nqα ď1 ´ ϵαk ` ϵαkπpΘ2q

ùñ πpΘ2q ě1 ´ 1{nα.

Further, note that if θ P Θn, for all ϵ P p0, ϵ0s, λθpSϵ{nq ě 1 ´ ϵα and

N pϵ;Sϵ{n, ϱq ď N pϵ{n;Sϵ{n, ϱq ď nsϵ´s.

Thus, Nϵpλθ, ϵ
αq ď nsϵ´s, for all ϵ ď ϵ0. Thus,

d̄αpλθq “ lim sup
ϵÓ

logNϵpλθ, ϵ
αq

logp1{ϵq
ď s.

Hence, Θn Ď tθ P Θ : d̄αpλθq ď su, for all n P N. Thus, π
`

tθ P Θ : d̄αpλθq ą su
˘

ď πpΘc
nq ď 1{n, for all

n P N. Taking n Ò 8, we get that π
`

tθ P Θ : d̄αpλθq ą su
˘

“ 0. Thus, by definition, s ą ess supπθPΘ d̄αpλθq,

which proves the result.

A.2 Proof of Corollary 9

Proof. We only prove part (b) of the corollary. Part (a) can be proved similarly. Suppose that a be the posi-

tive constant that honors the inequality in Theorem 8. Then, with probability at least 1´3 exp
´

´pmnq
s

2β`s

¯

´

2 exp
´

´m
s

2β`s

¯

,

}f̂ ´ f˚}2L2pλq ď am´
2β
s`2β

´

1 ` n´
2β
s`2β

¯

log3m
`

log2m` logpmnq
˘

.

We let ξ “ am´
2β
s`2β

´

1 ` n´
2β
s`2β

¯

log3m
`

log2m` logpmnq
˘

. Hence,

E}f̂ ´ f˚}2L2pλq “E}f̂ ´ f˚}2L2pλq1t}f̂ ´ f˚}2L2pλq ą ξu ` E}f̂ ´ f˚}2L2pλq1t}f̂ ´ f˚}2L2pλq ď ξu

ÀPp}f̂ ´ f˚}2L2pλq ą ξq ` ξ

ď3 exp
´

´pmnq
s

2β`s

¯

` 2 exp
´

´m
s

2β`s

¯

` am´
2β
s`2β

´

1 ` n´
2β
s`2β

¯

log3m
`

log2m` logpmnq
˘

Àm´
2β
s`2β

´

1 ` n´
2β
s`2β

¯

log3m
`

log2m` logpmnq
˘

,

when m and n are large enough.
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B Proofs from Section 6

B.1 Proof of Lemma 13

Proof. Since f̂ is the global minimizer of
řn
i“1pyi ´ fpxiqq2, we note that, for any f P F ,

m
ÿ

i“1

n
ÿ

j“1

pyij ´ f̂pxijqq2 ď

m
ÿ

i“1

n
ÿ

j“1

pyij ´ fpxijqq2 (11)

ðñ

m
ÿ

i“1

n
ÿ

j“1

pf0pxijq ` ϵij ´ f̂pxijqq2 ď

m
ÿ

i“1

n
ÿ

j“1

pf0pxijq ` ϵij ´ fpxijqq2. (12)

Taking f “ f0, we get,

m
ÿ

i“1

n
ÿ

j“1

pf0pxijq ´ f̂pxijqq2 ď

m
ÿ

i“1

n
ÿ

j“1

pf0pxijq ´ fpxijqq2 ` 2
m
ÿ

i“1

n
ÿ

j“1

ϵijpf̂pxijq ´ fpxijqq

ðñ }f̂ ´ f0}2L2pλ̂m,nq
ď}f ´ f0}2L2pλ̂m,nq

`
2

mn

m
ÿ

i“1

n
ÿ

j“1

ϵijpf̂pxijq ´ fpxijqq (13)

B.2 Proof of Lemma 14

Proof. We take δ “ max
!

n´α, 2}f̂ ´ f0}L2pλ̂m,nq

)

and let η “ e´pmnq
1´2α

. We consider two cases as follows.

Case 1: }f̂ ´ f˚}L2pλ̂m,nq
ď δ

Then, by Lemma 26, with probability at least 1 ´ exp
`

´n1´2α
˘

}f̂ ´ f˚}2L2pλ̂m,nq
ď2}f̂ ´ f0}2L2pλ̂m,nq

` 2}f0 ´ f˚}2L2pλ̂m,nq

À}f0 ´ f˚}2L2pλ̂m,nq
` sup
gPGδ

1

n

n
ÿ

i“1

ϵijgpxijq (14)

À}f0 ´ f˚}2L2pλ̂m,nq
` δ

c

logp1{ηq

mn
` δ

c

PdimpFq logpmn{δq

mn
(15)

In the above calculations, (14) follows from (13). Inequality (15) follows from Lemma 26. Let α1 ě 1 be the

corresponding constant that honors the inequality in (15). Then using the upper bound on δ, we observe

that,

}f̂ ´ f˚}2L2pλ̂m,nq

ďα1}f0 ´ f˚}2L2pλ̂m,nq
` α1δ

c

PdimpFq logpmn{δq

mn
` α1pmnq´2α

ďα1}f0 ´ f˚}2L2pλ̂m,nq
`
δ2

16
`

4α2
1

mn
PdimpFq logpmn{δq ` α1pmnq´2α (16)

ďα1}f0 ´ f˚}2L2pλ̂m,nq
` p1{8 ` α1qpmnq´2α `

1

4
}f̂ ´ f0}2L2pλ̂m,nq

`
4p1 ` αqα2

1

mn
PdimpFq logpmnq
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ďα1}f0 ´ f˚}2L2pλ̂m,nq
` 2α1pmnq´2α `

1

2
}f̂ ´ f˚}2L2pλ̂m,nq

`
1

2
}f˚ ´ f0}2L2pλ̂m,nq

`
4p1 ` αqα2

1

mn
PdimpFq logpmnq

Here, (16) follows from the fact that
?
xy ď x

16α1
` 4α1y, from the AM-GM inequality and taking x “ δ2

and y “
PdimpFq logpmn{δq

mn . Thus,

}f̂ ´ f˚}2L2pλ̂m,nq
Àpmnq´2α ` }f˚ ´ f0}2L2pλ̂m,nq

`
1

mn
PdimpFq logpmnq.

Case 2: }f̂ ´ f˚}L2pλ̂m,nq
ě δ

It this case, we note that }f̂ ´ f˚}L2pλ̂m,nq
ě 2}f̂ ´ f0}L2pλ̂m,nq

. Thus,

}f̂ ´ f˚}2L2pλ̂m,nq
ď2}f̂ ´ f0}2L2pλ̂m,nq

` 2}f0 ´ f˚}2L2pλ̂m,nq

ď
1

2
}f̂ ´ f˚}2L2pλ̂m,nq

` 2}f0 ´ f˚}2L2pλ̂m,nq

ùñ }f̂ ´ f˚}2L2pλ̂m,nq
À}f0 ´ f˚}2L2pλ̂m,nq

Thus, from the above two cases, with probability at least, 1 ´ exp
`

´pmnq1´2α
˘

,

}f̂ ´ f˚}2L2pλ̂m,nq
Àpmnq´2α ` }f˚ ´ f0}2L2pλ̂m,nq

`
1

n
PdimpFq logpmnq. (17)

From equation (17), we note that, for some constant B4,

P
ˆ

}f̂ ´ f˚}2L2pλ̂m,nq
ď B4

`

pmnq´2α ` }f˚ ´ f0}2L2pλ̂m,nq
`

1

mn
PdimpFq logpmnq

˘

ˇ

ˇ

ˇ

ˇ

x, θ

˙

ě 1 ´ exp
`

´pmnq1´2α
˘

Integrating both sides w.r.t.the joint distribution of txijuiPrms,jPrns, we observe that under Pp¨|θq, with

probability at least, 1 ´ exp
`

´pmnq1´2α
˘

,

}f̂ ´ f˚}2L2pλ̂m,nq
Àpmnq´2α ` }f˚ ´ f0}2L2pλ̂m,nq

`
1

mn
PdimpFq logpmnq. (18)

B.3 Proof of Lemma 15

Proof. In the proof all probabilities and expectations are w.r.t. Pp¨|θq. Let C
`

ϵ;RN pL,W,B,Rq, } ¨ }L8pλq

˘

be an ϵ-cover of RN pL,W,B,Rq w.r.t. the } ¨ }L8pλq-norm and let, N “ N
`

ϵ;RN pL,W,B,Rq, } ¨ }L8pλq

˘

.

Let, f P C
`

ϵ;RN pL,W,B,Rq, } ¨ }L8pλq

˘

be such that, }f ´ f̂}L8pλq ď ϵ. Then

}f̂ ´ f˚}2L2pλ̂pmq
ď 2}f̂ ´ f}2L2pλ̂pmq

` 2}f ´ f˚}2L2pλ̂pmq
ď 2ϵ2 ` 2}f ´ f˚}2L2pλq. (19)

For any g P C
´

ϵ;RN pL,W,B,Rq, } ¨ }L8pλ̂pmq

¯

, we let Zij “ pgpxijq ´ f˚pxijqq2 ´Epgpxijq ´ f˚pxijqq2. Let,

u “ max
!

v, 12}g ´ f˚}2L2pλ̂pmq

)

. Clearly,

EZ2
ij “ Var

`

pgpxijq ´ f˚pxijqq2
˘

ď Epgpxijq ´ f˚pxijqq4 ď 4R2Epgpxijq ´ f˚pxijqq2 ď 8R2u.
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Furthermore, |Zij | ď 8R2. Thus, from Bernstein’s inequality (Lemma 21), we note that,

P
ˆ m
ÿ

i“1

n
ÿ

j“1

Epgpxijq ´ f˚pxijqq2 ě

m
ÿ

i“1

n
ÿ

j“1

pgpxijq ´ f˚pxijqq2 `mnu

˙

ď exp
´

´
mnu

24R2

¯

ùñ P
´

}g ´ f˚}2L2pλ̂pmq
ě }g ´ f˚}2L2pλ̂m,nq

` u
¯

ď exp
´

´
mnu

24R2

¯

ď exp
´

´
mnv

24R2

¯

.

(20)

Thus, by union bound,

P
ˆ

}g ´ f˚}2L2pλ̂pmq
ď }g ´ f˚}2L2pλ̂m,nq

` u, @ g P C
`

ϵ;RN pL,W,B,Rq, } ¨ }L8pλq

˘

˙

ě 1 ´N exp
´

´
mnv

24R2

¯

.

Thus, under λ̂pm, with probability at least, 1´N exp
`

´ mnv
24R2

˘

, for all g P C
`

ϵ;RN pL,W,B,Rq, } ¨ }L8pλq

˘

,

}g ´ f˚}2L2pλ̂pmq
ď}g ´ f˚}2L2pλ̂m,nq

` u

ď}g ´ f˚}2L2pλ̂m,nq
` v `

1

2
}g ´ f˚}2L2pλ̂pmq

ùñ }g ´ f˚}2L2pλ̂pmq
ď2}g ´ f˚}2L2pλ̂m,nq

` 2v.

Taking v “ 24R2

mn

`

logN ` pmnq1´2α
˘

, we note that, under λ̂pm with probability at least, 1´expp´pmnq1´2αq,

for all g P C
`

ϵ;RN pL,W,B,Rq, } ¨ }L8pλq

˘

,

}g ´ f˚}2L2pλ̂pmq
ď 2}g ´ f˚}2L2pλ̂m,nq

`
48R2

mn

`

logN ` pmnq1´2α
˘

From, (19), we thus observe that under λ̂pm, with probability at least, 1 ´ expp´pmnq1´2αq,

}f̂ ´ f˚}2L2pλ̂pmq
ď2ϵ2 ` 4}f ´ f˚}2L2pλ̂m,nq

`
96R2

mn

`

logN ` pmnq1´2α
˘

(21)

ď4ϵ2 ` 8}f̂ ´ f˚}2L2pλ̂m,nq
`

96R2

mn

`

logN ` pmnq1´2α
˘

(22)

Applying Lemma 14, we note that under λ̂pm, with probability at least, 1 ´ 2 expp´pmnq1´2αq,

}f̂ ´ f˚}2L2pλ̂pmq
À4ϵ2 ` pmnq´2α ` }f˚ ´ f0}2L2pλ̂n,mq

`
1

mn
PdimpFq logpmnq `

log logpmnq

mn

`
96R2

mn

`

logN ` pmnq1´2α
˘

(23)

Applying Lemma 32 with t “ pmnq´α and g : x ÞÑ pf˚pxq ´ f0pxqq2, we note that, with probability at least,

1 ´ exp
`

´pmnq1´2α
˘

,

}f˚ ´ f0}2L2pλ̂n,mq
ď }f˚ ´ f0}2L2pλ̂pmq

` pmnq´2α (24)
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Combining (23) and (24), we note that with probability at least 1 ´ 3 expp´pmnq1´2αq,

}f̂ ´ f˚}2L2pλ̂pmq
À4ϵ2 ` pmnq´2α ` }f˚ ´ f0}2L2pλ̂pmq

`
1

mn
PdimpFq logpmnq `

log logpmnq

mn

`
96R2

mn

`

logN ` pmnq1´2α
˘

(25)

B.4 Proof of Lemma 16

Lemma 19. With probability at least, 1 ´ 3 exp
`

´pmnq1´2α
˘

´ 2 exp
´

´m1´2α1
¯

,

}f̂ ´ f˚}2L2pλq À}f˚ ´ f0}2L2pλq `m´2α1

` pmnq´2α ` PdimpFq

ˆ

log2m

m
`

logpmnq

mn

˙

`
log logm

m
`

log logpmnq

mn
` ϵ2 `

logN
`

ϵ;F , } ¨ }L8pr0,1sdq

˘

mn
.

Proof. Suppose that H “
␣

h : θ ÞÑ
ş

pf ´ f 1q2dλθ : f P F
(

. We note that if n ě PdimpFq and r P p0, r0s,

then, the empirical Rademacher complexity can be bounded as,

Rm
`

H; tθiuiPrms

˘

“
1

m
Eσ

m
ÿ

i“1

σihpθiq

À

c

r logp1{rqPdimpFq logm

m
(26)

ď

c

pPdimpFqq2 logm

m2
` r

PdimpFq logpm{ePdimpFqq logm

m
(27)

Here, σ1
is are independent Rademacher random variables. In the above calculations, (26) follows from

Lemma 28 and (27) follows from Lemma 31. Applying Lemma 22, we note that, the RHS of (27) has a fixed

point of r˚ and r˚ À
PdimpFq log2m

m . Then, by Theorem 6.1 of Bousquet (2002), we note that with probability

at least 1 ´ e´x, for all h P H,

ż

hdπ À B3

ˆ
ż

hdπ̂m `
PdimpFq log2m

m
`
x

m
`

log logm

m

˙

, (28)

for some absolute constant B3. Now, taking x “ pmnq1´2α in (28), we note that, with probability at

least 1 ´ exp
´

´m1´2α1
¯

,

}f̂ ´ f˚}2L2pλq Àm´2α1

` }f̂ ´ f˚}2L2pλ̂pmq
`

1

m
PdimpFq log2m`

log logm

m
(29)

Combining (29) with Lemma 15, we observe that with probability at least 1´3 exp
`

´pmnq1´2α
˘

´exp
´

´m1´2α1
¯

,

}f̂ ´ f˚}2L2pλq À}f˚ ´ f0}2L2pλ̂pmq
`m´2α1

` pmnq´2α `
1

m
PdimpFq log2m

`
1

mn
PdimpFq logpmnq `

log logm

m
`

log logpmnq

mn
` ϵ2 `

logN
`

ϵ;F , } ¨ }L8pr0,1sdq

˘

mn
(30)
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Applying Lemma 32 with t “ m´α1

, Zi “ θi and g : θ ÞÑ }f˚ ´ f0}2L2pλθq
, we note that, with probability at

least, 1 ´ 3 exp
`

´pmnq1´2α
˘

´ 2 exp
´

´m1´2α1
¯

,

}f̂ ´ f˚}2L2pλq À}f˚ ´ f0}2L2pλq `m´2α1

` pmnq´2α `
1

m
PdimpFq log2m

`
1

mn
PdimpFq logpmnq `

log logm

m
`

log logpmnq

mn
` ϵ2 `

logN
`

ϵ;F , } ¨ }L8pr0,1sdq

˘

mn
(31)

Lemma 20. Suppose that λθ ! λ, almost surely under π. Then, with probability at least 1´3 exp
`

´pmnq1´α
˘

´

2 exp
´

´m1´α1
¯

,

}f̂ ´ f˚}2L2pλq Àϵ2 ` pmnq´2α `
1

mn
logN

`

ϵ;F , } ¨ }L8pr0,1sdq

˘

`
1

mn
pPdimpFq logpmnq ` log logpmnqq

`
}χ2pλθ, λq}ψ1

m

´

logN
`

ϵ;F , } ¨ }L8pr0,1sdq

˘

`m1´2α1
¯

.

Proof. Let C
`

ϵ;RN pL,W,B,Rq, } ¨ }L8pλq

˘

be an ϵ-cover of RN pL,W,B,Rq w.r.t. the } ¨ }L8pλq-norm and

let,

N “ N
`

ϵ;RN pL,W,B,Rq, } ¨ }L8pλq

˘

.

Let, f P C
`

ϵ;RN pL,W,B,Rq, } ¨ }L8pλq

˘

be such that, }f ´ f̂}L8pλq ď ϵ. Then

}f̂ ´ f˚}2L2pλq ď2}f̂ ´ f}2L2pλq ` 2}f ´ f˚}2L2pλq ď 2ϵ2 ` 2}f ´ f˚}2L2pλq. (32)

Suppose that λθ ! λ, almost surely under π. Then, by Radon-Nykodym theorem, the density of λθ w.r.t. λ

exists and is denoted by pθ “
dλθ
dλ . By Lemma 29, with probability at least, 1 ´ 2N exp

´

´ c3mv
}χ2pλθ,λq}ψ1

¯

, for

all g P C
`

ϵ;RN pL,W,B,Rq, } ¨ }L8pλq

˘

,

}g ´ f˚}2L2pλq ď2}g ´ f˚}2L2pλ̂pmq
` 2v.

Taking v “
}χ2

pλθ,λq}ψ1

c3m

´

logp2Nq `m1´2α1
¯

, we note that with probability at least, 1 ´ expp´m1´2α1

q, for

all g P C
`

ϵ;RN pL,W,B,Rq, } ¨ }L8pλq

˘

,

}g ´ f˚}2L2pλq ď 2}g ´ f˚}2L2pλ̂pmq
`

2}χ2pλθ, λq}ψ1

c3m

´

logp2Nq `m1´2α1
¯

From, (32), we thus observe that, with probability at least 1 ´ expp´m1´2α1

q,

}f̂ ´ f˚}2L2pλq Àϵ2 ` }f ´ f˚}2L2pλ̂pmq
`

}χ2pλθ, λq}ψ1

m

´

logp2Nq `m1´2α1
¯

(33)

Applying Lemma 15, we note that, with probability at least 1 ´ 2 expp´m1´2α1

q,

}f̂ ´ f˚
}
2
L2pλq Àϵ2 ` pmnq

´2α
`

1

mn
logN

`

ϵ;F , } ¨ }L8pr0,1sdq

˘

`
1

mn
pPdimpFq logpmnq ` log logpmnqq

`
}χ2

pλθ, λq}ψ1

m

´

logN
`

ϵ;F , } ¨ }L8pr0,1sdq

˘

` m1´2α1
¯

(34)
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Similarly, using Lemma 29, we note that, with probability at least, 1 ´ exp
´

´m1´2α1
¯

,

}f˚ ´ f0}2L2pλ̂pmq
À }f˚ ´ f0}2L2pλq `

a

}χ2pλθ, λq}ψ1m
´2α (35)

Combining (34) and (35), we note that with probability at least 1 ´ 3 expp´pmnq1´2αq ´ 2 expp´m1´2α1

q,

}f̂ ´ f˚}2L2pλq Àϵ2 ` pmnq´2α `
1

mn
logN

`

ϵ;F , } ¨ }L8pr0,1sdq

˘

`
1

mn
pPdimpFq logpmnq ` log logpmnqq

`
}χ2pλθ, λq}ψ1

m

´

logN
`

ϵ;F , } ¨ }L8pr0,1sdq

˘

`m1´2α1
¯

.

Combining Lemmata 19 and 20, we get Lemma 16.

C Auxiliary Results

C.1 Supporting Results From the Literature

This section outlines, without proof, a selection of relevant theoretical underpinnings from the literature that

are employed in this paper.

Lemma 21 (Bernstein’s Inequality for Bounded Distributions, Theorem 2.8.4 of Vershynin (2018)). Let

X1, . . . , XN be independent, mean zero random variables such that |Xi| ď K for all i P rN s. Then, for every

t ě 0, we have

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

¸

ď 2 exp

˜

´
t2

2σ2 ` Kt
3

¸

.

Here, σ2 “
řN
i“1 EpX2

i q is the variance of the sum.

Lemma 22 (Lemma B.1 of Yousefi et al. (2018)). Let c1, c2 ą 0 and s ą q ą 0. Then the equation

xs ´ c1x
q ´ c2 “ 0 has a unique positive solution x0 satisfying

x0 ď

ˆ

c
s
s´1

1 `
sc2
s´ q

˙
1
s

.

Moreover, for any x ě x0, we have xs ě c1x
q ` c2.

Lemma 23 (Lemma 21 of Nakada and Imaizumi (2020)). Let F “ RN pW,L,Bq be a space of ReLU

networks with the number of weights, the number of layers, and the maximum absolute value of weights

bounded by W , L, and B respectively. Then,

logN pϵ;F , ℓ8q ď W log

ˆ

2LBLpW ` 1qL

ϵ

˙

.
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Lemma 24 (Theorem 12.2 of Anthony and Bartlett, 2009). Assume for all f P F , }f}8 ď M . Denote the

pseudo-dimension of F as PdimpFq, then for n ě PdimpFq, we have for any ϵ and any X1, . . . , Xn,

N pϵ;F|X1:n
, ℓ8q ď

ˆ

2eMn

ϵPdimpFq

˙PdimpFq

.

C.2 Additional Lemmata

Lemma 25. Suppose that Z1, . . . , Zn are independent and identically distributed sub-Gaussian random

variables with variance proxy σ2 and suppose that }f}8 ď b for all f P F . Then with probability at least

1 ´ δ,
1

n
sup
fPF

n
ÿ

i“1

Zifpxiq ´
1

n
E sup
fPF

n
ÿ

i“1

Zifpxiq À bσ

c

logp1{δq

n
.

Proof. Let gpZq “ 1
n supfPF

řn
i“1 Zifpxiq. Using the notations of Maurer and Pontil (2021), we note that

}gkpZq}ψ2 “
1

n

›

›

›

›

sup
fPF

˜

ÿ

i‰k

zifpxiq ` Zkfpxkq

¸

´ EZ1
k
sup
fPF

˜

ÿ

i‰k

zifpxiq ` Z 1
kfpxkq

¸

›

›

›

›

ψ2

ď
1

n

›

›

›
EZ1

k
|Zk ´ Z 1

kfpxkq|

›

›

›

ψ2

ď
b

n

›

›

›
EZ1

k
|Zk ´ Z 1

k|

›

›

›

ψ2

(36)

ď
b

n

›

›Zk ´ Z 1
k

›

›

ψ2

ď
2b

n
}Zk}ψ2

À
bσ

n
.

Here, (36) follows from (Maurer and Pontil, 2021, Lemma 6). Thus,
›

›

›

řn
k“1 }gkpZq}2ψ2

›

›

›

8
À b2σ2{n. Hence

applying (Maurer and Pontil, 2021, Theorem 3), we note that with probability at least 1 ´ δ,

1

n
sup
fPF

n
ÿ

i“1

Zifpxiq ´
1

n
E sup
fPF

n
ÿ

i“1

Zifpxiq À bσ

c

logp1{δq

n
.

Lemma 26. Suppose that Gδ “

!

f ´ f 1 : }f ´ f 1}L8pλ̂m,nq
ď δ and f, f 1 P F

)

, with δ ď 1{e. Also let,

n ě PdimpFq. Then, for any t ą 0, under Pp¨|x1:nq, with probability at least 1 ´ η,

sup
gPGδ

1

mn

m
ÿ

i“1

n
ÿ

j“1

ϵijgpxijq Àδ

c

logp1{ηq

mn
` δ

c

PdimpFq logpmn{δq

mn

Proof. From the definition of Gδ, it is clear that logN pϵ;Gδ, } ¨ }L8pλ̂m,nq
q ď 2 logN pϵ{2;F , } ¨ }L8pλ̂m,nq

q. Let

Zf “ 1?
mn

řm
i“1

řn
j“1 ϵikfpxijq. Clearly, EϵZf “ 0. Furthermore, we observe that,

Eϵ exppλpZf ´ Zgqq “Eϵ exp

˜

λ
?
mn

m
ÿ

i“1

n
ÿ

j“1

ϵijpfpxijq ´ gpxijqq

¸
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“

m
ź

i“1

n
ź

j“1

Eϵ exp
ˆ

λ
?
mn

ϵijpfpxijq ´ gpxijqq

˙

ď

m
ź

i“1

n
ź

j“1

Eϵ exp
ˆ

λ2σ2

2n
pfpxijq ´ gpxijqq2

˙

ď exp

˜

λ2σ2

2mn

m
ÿ

i“1

m
ÿ

j“1

pfpxijq ´ gpxijqq2

¸

“ exp

ˆ

λ2σ2

2
}f ´ g}2L2pλ̂m,nq

˙

.

Thus, pZf ´ Zgq is }f ´ g}2L2pλ̂m,nq
σ2-subGaussian. Furthermore,

sup
f,gPGδ

}f ´ g}L2pλ̂m,nq
“ sup
f,f 1PF :}f´f 1}L8pλ̂m,nq

ďδ

}f ´ f 1}L2pλ̂m,nq
ď sup
f,f 1PF :}f´f 1}L8pλ̂m,nq

ďδ

}f ´ f 1}L8pλ̂m,nq
ď δ.

From (Wainwright, 2019, Proposition 5.22),

Eϵ sup
gPGδ

1
?
mn

m
ÿ

i“1

n
ÿ

j“1

ϵijgpxijq “Eϵ sup
gPGδ

Zg (37)

“Eϵ sup
gPGδ

pZg ´ Zg1 q

ďEϵ sup
g,g1PGδ

pZg ´ Zg1 q

ď32

ż δ

0

b

logN pϵ;Gδ,L2pλ̂m,nqqdϵ

À

ż δ

0

b

logN pϵ{2;F ,L8pλ̂m,nqqdϵ

À

ż δ

0

a

PdimpFq logpmn{ϵqdϵ

ďδ
a

PdimpFq logmn`
a

PdimpFq

ż δ

0

a

logp1{ϵqdϵ

ďδ
a

PdimpFq logmn` 2
a

PdimpFqδ
a

logp1{δq (38)

Àδ
a

PdimpFq logpmn{δq (39)

(38) follows from Lemma 30. Thus,

Eϵ sup
gPGδ

1

mn

m
ÿ

i“1

n
ÿ

j“1

ϵijgpxijq Àδ

c

PdimpFq logpmn{δq

mn
(40)

Applying Lemma 25, we note that, with probability at least 1 ´ η,

sup
gPGδ

1

mn

m
ÿ

i“1

n
ÿ

j“1

ϵijgpxijq Àδ

c

logp1{ηq

mn
` δ

c

PdimpFq logpmn{δq

mn
. (41)
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Lemma 27. Let Hr “ th “ pf ´ f 1q2 : f, f 1 P F and λnh ď ru with supfPF }f}L8pλnq ă 8. Then, we can

find r0 ą 0, such that if 0 ă r ď r0 and n ě PdimpFq,

Eϵ sup
hPHr

1

n

n
ÿ

i“1

ϵihpxiq À

c

r logp1{rqPdimpFq log n

n
.

Proof. Let B “ 4 supfPF }f}2L8pλnq
. We first fix ϵ ď

?
2Br and let h “ f ´f 1 be a member of Hr with f, f

1 P

F . We use the notation F|x1:n
“ tpfpx1q, . . . , fpxnqqJ : f P Fu. Suppose that vf ,vf

1

P Cpϵ;F|x1:n
, } ¨ }8q be

such that |vfi ´ fpxiq|, |vf
1

i ´ f 1pxiq| ď ϵ, for all i. Here Cpϵ;F|x1:n
, } ¨ }8q denotes the ϵ cover of F|x1:n

w.r.t.

the ℓ8-norm. Let v “ vf ´ vf
1

Then

1

n

n
ÿ

i“1

phpxiq ´ v2i q2 “
1

n

n
ÿ

i“1

ppfpxiq ´ f 1pxiqq2 ´ pvfi ´ vf
1

i q2q2

ď
2

n

n
ÿ

i“1

ppfpxiq ´ f 1pxiqq2 ` pvfi ´ vf
1

i q2q ˆ ppfpxiq ´ f 1pxiqq ´ pvfi ´ vf
1

i qq2 (42)

Àϵ2. (43)

Here (42) follows from the fact that pt2 ´ r2q2 “ pt` rq2pt´ rq2 ď 2pt2 ` r2qpt´ rq2, for any t, r P R. Hence,

from the above calculations, N pϵ;Hr,L2pλnqq ď pN pa1ϵ;F ,L8pλnqqq
2
, for some absolute constant a1.

diam2
pHr,L2pλnqq “ sup

h,h1PHr

}h´ h1}2L2pλnq ď sup
h,h1PHr

1

n

n
ÿ

i“1

phpxiq ´ h1pxiqq2

ď2 sup
hPHr

1

n

n
ÿ

i“1

h2pxiq

ď2B sup
hPHr

1

n

n
ÿ

i“1

hpxiq

ď2Br.

Hence, diampHr,L2pλnqq ď
?
2Br. Thus from (Wainwright, 2019, Theorem 5.22)

Eϵ sup
hPHr

1

n

n
ÿ

i“1

ϵihpxiq À

ż

?
2Br

0

c

1

n
logN pϵ;Hr,L2pλnqqdϵ

ď

ż

?
2Br

0

c

2PdimpFq

n
log

´a2n

ϵ

¯

dϵ

À
?
2Br

c

PdimpFq log n

n
`

ż

?
2Br

0

c

PdimpFq

n
logpa2{ϵqdϵ

À

c

r logp1{rqPdimpFq log n

n
. (44)

ď

c

pPdimpFqq2 log n

n2
` r

PdimpFq logpn{ePdimpFqq log n

n
. (45)

Here, (44) follows from Lemma 30. Here, (45) follows from Lemma 31 with x “ r and y “ PdimpFq{n.
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Lemma 28. Let Hr “ th : θ ÞÑ
ş

pf ´ f 1q2dλθ : f, f
1 P F and π̂mh ď ru with supfPF }f}L8pλnq ă 8. Then,

we can find r0 ą 0, such that if 0 ă r ď r0 and n ě PdimpFq,

Eσ sup
hPHr

1

m

m
ÿ

i“1

σihpθiq À

c

pPdimpFqq2 logm

m2
` r

PdimpFq logpm{ePdimpFqq logm

m
.

Proof. Let B “ 4 supfPF }f}L8pr0,1sdq. Let f̂ , f̂ 1 P Cpϵ;F , } ¨ }L8pr0,1sdqq be such that, }f ´ f̂}L8pr0,1sdq, }f
1 ´

f̂ 1}L8pr0,1sdq ď ϵ. Let ĥpθq “
ş

´

f̂ ´ f̂ 1

¯2

dλθ. Then, for any θ,

1

m

m
ÿ

i“1

|hpθiq ´ ĥpθiq|2 ď
1

m

m
ÿ

i“1

ż

ˇ

ˇ

ˇ

ˇ

pf ´ f 1q2 ´

´

f̂ ´ f̂ 1
¯2
ˇ

ˇ

ˇ

ˇ

2

dλθi

ď
2

m

m
ÿ

i“1

ż
ˆ

pf ´ f 1q2 `

´

f̂ ´ f̂ 1
¯2
˙

´

f ´ f 1 ´

´

f̂ ´ f̂ 1
¯¯2

dλθi

Àϵ2

Hence, from the above calculations, N pϵ;Hr,L2pπ̂mqq ď pN pa3ϵ;F ,L8pπ̂mqqq
2
, for some absolute con-

stant a3. We also note that,

diam2
pHr,L2pλnqq “ sup

h,h1PHr

}h´ h1}2L2pπ̂mq ď sup
h,h1PHr

1

m

m
ÿ

i“1

phpθiq ´ h1pθiqq2

ď2 sup
hPHr

1

m

m
ÿ

i“1

h2pθiq

ď2B sup
hPHr

1

m

m
ÿ

i“1

hpθiq

ď2Br.

Hence, diampHr,L2pπ̂mqq ď
?
2Br. Thus from (Wainwright, 2019, Theorem 5.22)

Eϵ sup
hPHr

1

m

m
ÿ

i“1

σihpθiq À

ż

?
2Br

0

c

1

n
logN pϵ;Hr,L2pπ̂mqqdϵ

ď

ż

?
2Br

0

c

2PdimpFq

m
log

´a4m

ϵ

¯

dϵ

À
?
2Br

c

PdimpFq logm

m
`

ż

?
2Br

0

c

PdimpFq

m
logpa2{ϵqdϵ

À

c

r logp1{rqPdimpFq logm

m
. (46)

ď

c

pPdimpFqq2 logm

m2
` r

PdimpFq logpm{ePdimpFqq logm

m
. (47)

Here, (44) follows from Lemma 30.

Lemma 29. Suppose that v ą 0 and }f}L8pr0,1sdq ď 2R. Then with probability at least 1´2 exp
´

´ c3mv
}χ2pλθ,λq}ψ1

¯

,

}f}2L2pλ̂pmq
ď

3

2
}f}2L2pλq ` v and }f}2L2pλq ď 2}f}2L2pλ̂pmq

` 2v.

Here c3 is a constant that depends on R.
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Proof. Suppose that λθ ! λ, almost surely under π. Then, by Radon-Nykodym theorem, the density of λθ

w.r.t. λ exists and is denoted by pθ “
dλθ
dλ . We let,

Zi “

ż

f2pxqdλθipxq ´

ż

f2pxqdλpxq “

ż

f2pxqppθipxq ´ 1qdλ

Suppose hpxq “ f2pxq and u “ max
!

v, 12}f}2L2pλq

)

. Then,

|Zi|
2 ď

ż

h2pxqdλ ¨

ż

ppθipxq ´ 1q2dλ “ }h}2L2pλq ¨ χ2pλθi , λq

ùñ }Zi}
2
ψ2

“ }Z2
i }ψ1

ď }h}2L2pλq ¨ }χ2pλθ, λq}ψ1
ď 8R2u}χ2pλθ, λq}ψ1

(48)

In (48), the first equality follows from Vershynin (2018, Lemma 2.7.6). By Hoeffding’s inequality,

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

Zi

ˇ

ˇ

ˇ

ˇ

ˇ

ą mu

¸

ď 2 exp

ˆ

´
cm2u2

8R2mu}χ2pλθ, λq}ψ1

˙

“2 exp

ˆ

´
cmu

8R2}χ2pλθ, λq}ψ1

˙

. (49)

Here, c3 “ c
8R2 . Hence, with probability at least, 1 ´ 2 exp

´

´ c3mv
}χ2pλθ,λq}ψ1

¯

,

}f}2L2pλ̂pmq
ď }f}2L2pλq ` u ď }f}2L2pλq ` v `

1

2
}f}2L2pλq “

3

2
}f}2L2pλq ` v.

Furthermore,

}f}2L2pλq ď }f}2L2pλ̂pmq
` u ď }f}2L2pλ̂pmq

` v `
1

2
}f}2L2pλq ùñ }f}2L2pλq ď 2}f}2L2pλ̂pmq

` 2v.

Lemma 30. For any δ ď 1{e,
şδ

0

a

logp1{ϵqdϵ ď 2δ
a

logp1{δq.

Proof. We start by making a transformation x “ logp1{ϵq and observe that,

ż δ

0

a

logp1{ϵqdϵ “

ż 8

logp1{δq

?
xe´xdx “

ż 8

logp1{δq

?
xe´x{2e´x{2dx

ď
a

logp1{δqe´ 1
2 logp1{δq

ż 8

logp1{δq

e´x{2dx (50)

“2δ
a

logp1{δq.

In the above calculations, (50) follows from the fact that the function
?
xe´x{2 is decreasing when x ě 1.

Lemma 31. For any x, y ą 0, x log x ď y ` x logp1{yeq.

Proof. Let fprq “ r logp1{rq. Then, f 1prq “ ´ logpreq and f2prq “ ´1{r. Thus, fp¨q is concave and thus, for

any x, y ą 0,

fpxq ď fpyq ` f 1pyqpx´ yq “ ´y log y ´ plog y ` 1qpx´ yq “ y ´ x logpyeq “ y ` x logp1{yeq.
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Lemma 32. Suppose that gp¨q be a non-negative real-valued function such that B “ }g}8 ă 8. Let

Z1, . . . , Zn be independent random variables. Then, with probability at least 1 ´ e´nt,

1

n

n
ÿ

i“1

gpZiq ď
2

n

n
ÿ

i“1

EgpZiq `
7Bt

3
.

Proof. Let Yi “ gpZiq ´ EgpZiq. Also let v ą 0 and u “ max
␣

v, 1
n

řn
i“1 EgpZiq

(

. Clearly,

EY 2
i “ VarpYiq “ VarpgpZiqq ď Eg2pZiq ď BEgpZiq. (51)

Thus, σ2 “
řn
i“1 EY 2

i ď B
řn
i“1 EgpZiq ď nBu. From Lemma 21, we observe that,

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

gpZiq ´ EgpZiq

ˇ

ˇ

ˇ

ˇ

ˇ

ą nu

¸

ď exp

ˆ

´
n2u2

2σ2 ` nBu{3

˙

ď exp

ˆ

´
3nu

7B

˙

ď exp

ˆ

´
3nv

7B

˙

Thus, with probability at least 1 ´ exp
`

´ 3nv
7B

˘

,

1

n

n
ÿ

i“1

gpZiq ď
1

n

n
ÿ

i“1

EgpZiq ` u ď
2

n

n
ÿ

i“1

EgpZiq ` v.

Taking v “ 7Bt{3, we get the desired result.
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